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Computations and Aeroelastic Applications
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Comparisons were made of computed and experimental data in three-dimensional unsteady transonic
aerodynamics, including aeroelastic applications. The computer code LTRAN3, which is based on small-
disturbance aerodynamic theory, was used to obtain the aerodynamic data. A procedure based on the U-g
method was developed to compute flutter boundaries by using the unsteady aerodynamic coefficients obtained
from LTRAN3. The experimental data were obtained from available NASA publications. All of the studies were
conducted for thin, unswept, rectangular wings with circular-arc cross sections. Numerical and experimental
steady and unsteady aerodynamic data were compared for a wing with an aspect ratio of 3 and a thickness ratio
of 5% at Mach numbers of 0.7 and 0.9. Flutter data were compared for a wing with an aspect ratio of 5. Two
thickness ratios, 6% at Mach numbers of 0.715, 0.851, and 0.913, and 4% at Mach number of 0.904, were
considered. Based on the unsteady aerodynamic data obtained from LTRAN3, flutter boundaries were com-
puted; they were compared with those obtained from experiments and the code NASTRAN, which uses linear
aerodynamics.

Nomenclature
ah = distance between midchord and elastic axis

measured in semichords, positive toward the trailing
edge

b — semichord length
c = full-chord length
Q(V = sectional lift coefficients due to h and a. modes,

respectively
Cma = sectional moment coefficients due to h and a. modes,

respectively
Cp — pressure coefficient
gh = structural damping corresponding to h mode
ga = structural damping corresponding to a. mode
h — bending displacement of elastic axis
7(V = sectional polar moment of inertia about elastic axis
kb — reduced frequency defined as wb/ U
kc = reduced frequency defined as we/ U
f =semispan length of the wing
m — mass of the wing per unit span
r(* — (Av /mb2)V l , radius of gyration about elastic axis
Sa = sectional static moment about elastic axis
U — freestream velocity
xiy —S(Jmby distance in semichords measured from

elastic axis to mass center of the wing section
a = rotation of the wing section about the elastic axis
7 —rat io of specific heats
A — unsteady pressure jump
X = flutter eigenvalue
(ji = m/irpb2, wing-to-air-mass density ratio
£ —h/b, nondimensional bending displacement
p — freestream density
7 — ratio of maximum thickness of wing cross section to

chord length
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0 = disturbance velocity potential
uh = uncoupled natural frequency of h mode
w rv = uncoupled natural frequency of a. mode

Introduction

EXTENSIVE experimental and numerical studies have
been conducted recently in the area of transonic

aerodynamics and aeroelasticity. Such studies are important
because the transonic regime plays an important role in the
design of modern aircraft. A review of the state-of-the-art of
transonic flow computations was given by Ballhaus et al.,1

and developments in experimental and theoretical transonic
aerodynamics for aeroelastic applications were reviewed by
Ashley.2

Both experimental and theoretical studies are quite com-
plicated in the transonic regime, because the equations
governing the flow are nonlinear, and these flows are
characterized by the presence of shock waves. Studies have
shown that for the case of flows at Mach numbers near 1,
small-amplitude motions can cause large variations in the
aerodynamic forces and moments. Because of these special
characteristics of transonic flows, the probabili ty of en-
countering aeroelastic instabilities is higher. For example, it
has been found both experimentally and theoretically tha t
flutter boundary curves show a dip in the transonic range.2

During the last decade various computer codes have been
developed to compute unsteady transonic aerodynamics for
aeroelastic applications. In particular, codes that solve the
small-disturbance potential equations for transonic flows
about oscillating airfoils, such as LTRAN2,3 are now used
routinely.4 '5 Similar codes are now being developed for the
computation of three-dimensional unsteady aerodynamics.

In Ref. 6, Traci et al. reported the development of the three-
dimensional steady and unsteady small-disturbance codes,
TDSTRN and TDUTRN, respectively. The unsteady code
TDUTRN is based on the harmonic method where an un-
steady solution is linearized with respect to time. Thus, it is
limited to cases with small oscillations. Eastep and Olsen7

applied these codes for the computation of f lut ter boundaries
of a rectangular wing by using the U-g method.
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As an alternative, but more complete method, Borland et
al.8 have developed a three-dimensional, unsteady, small-
disturbance transonic low-frequency code, LTRAN3 based on
a time-integration method. In this code, the finite difference
scheme developed for two-dimensional flows3 was extended
to three-dimensional flows over wings. A demonstration
calculation of the code was performed by computing the
unsteady loads on a swept wing with an NACA 64A010 airfoil
section at Mach number 0.9. In Ref. 9, Borland and Rizzetta
developed a modified code, XTRAN3S. In this code high-
frequency effects are incorporated in both the governing
differential equation and the boundary conditions. It also has
the capability of performing static and dynamic aeroelastic
computations by simultaneously integrating the aerodynamic
and structural equations of motion. Borland and Rizzetta
illustrated this capability by computing flutter boundaries for
a rectangular wing with a 6% thick parabolic-arc airfoil
section at Mach numbers of 0.8, 0.85 and 0.875. These codes,
which are candidates for use in research and industrial ap-
plications, have yet to be compared with experimental results.

Parallel to these theoretical attempts, several experimental
studies were conducted in the areas of transonic aerodynamics
and aeroelasticity.10'14 These experiments can be used in-
dependently to help in understanding physical phenomena
and to provide an experimental data base for the assessment
of new computer codes. Because of the complexity of trans-
onic aerodynamics, it is necessary to compare experimental
and theoretical results in detail.

In this study, aerodynamic and aeroelastic results obtained
by the unsteady, small-disturbance transonic code LTRAN3
are compared with the corresponding experimental results
available from NASA.11"13 Unswept, rectangular, flexible
wings with thin circular-arc airfoil sections are considered for
flows in the transonic Mach number range.

In order to compare aerodynamic results from LTRAN3
and experiment, a case of a rectangular wing that was ex-
perimentally studied in Ref. 11 was selected at Mach numbers
of 0.7 and 0.9. The wing has circular-arc airfoil sections of
maximum thickness-to-chord ratio of 5%, and was subjected
to oscillatory motion in the first bending mode. Both steady
and unsteady pressure distributions obtained from LTRAN3
and experiment are compared at four span stations for Mach
numbers of 0.7 and 0.9. Unsteady results are presented in the
form of chordwise distributions of pressure coefficients in
magnitude and phase angle. These results are also compared
with corresponding results obtained by linear aerodynamic
theory.

To compare flutter results obtained by using unsteady
aerodynamic coefficients from LTRAN3 with experimental
data,13 four cases of a rectangular wing with circular-arc
airfoil cross sections were considered. The cases considered
were: 1) 6% thick at M = 0.715, 2) 6% thick at M = 0.851,
3) 6% thick at M = 0.913, and 4) 4% thick at M = 0.904.

In Ref. 9 the simultaneous integration method was em-
ployed to obtain flutter boundaries. Although this method is
accurate for the transonic regime, it has some disadvantages
when it has to be used alone. The method requires aeroelastic
parameters that are close to flutter as an input in order to find
the f lu t ter boundary. If the aeroelastic parameters are not
close to the flutter boundary, it may take several com-
putationally expensive attempts to obtain the flutter boun-
dary. In addition it may not give undamped motion for all of
the assumed modes unless the aeroelastic parameters are
exactly the same as that for the flutter boundary.

In this study an alternative procedure based on the U-g
method is used to obtain the flutter boundary. When com-
pared with the procedure used in Ref. 9, the present procedure
requires the additional assumption that the principle of
superposition of airloads is valid. This principle is valid even
in the presence of shocks when the amplitude of oscillations is
small.3 '15 Since the flutter equations are based on small
amplitudes of oscillations, the superposition principle is valid

in this study. Such assumptions have led to successful
methods for predicting the flutter of airfoils in the transonic
regime.16 As suggested in Ref. 16, a combination of the
procedure given in Ref. 9 and the present procedure may lead
to an efficient way of predicting the flutter boundaries of
wings in the transonic regime for airfoils.

To obtain flutter boundaries by the U-g method, unsteady
aerodynamic coefficients were computed from LTRAN3 for
two assumed modes at three selected reduced frequencies.
Flutter results are presented in the form of plots of flutter
speed and corresponding reduced frequency vs wing-air
density ratio. These results are compared with experiments
and also with those results obtained from the computer code
NASTRAN, which uses linear aerodynamics based on the
doublet-lattice method.

Aerodynamic Equations of Motion
Many forms of the small-disturbance equations have been

developed for computing the transonic flowfield about
wings. 17,18 In this analysis the modified unsteady, three-
dimensional, transonic small-disturbance equation is used.

A </>„ + B<t>xt = ( E<t>x

0)

where 4> is the disturbance velocity potential; A =
B = 2Mi; £=( l -Af i ) ; F= 1/2(7+ l)Mi; G= '/2(7
and/ /=-(7- l)A/i> .

The low-frequency form of this equation is solved in the
computer code LTRAN3 by setting A to zero and using
corresponding boundary conditions. This code is based on a
time-marching, finite difference scheme following the first-
order accurate alternating direction implicit (ADI) algorithm.
A detailed description of the procedure can be found in Ref.
19. It is the first time that a computer code has been developed
by extending the ADI algorithm from two to three dimen-
sions. Preliminary comparisons with other theoretical
methods have shown that the ADI method can be used
satisfactorily to solve Eq. (1); however, it is necessary to
validate the method by making detailed comparisons with
experiments.

For the cases considered in this study, a Cartesian grid was
used with 60 points in the streamwise direction, 40 points in
the vertical direction, and 20 points in the spanwise direction.
The wing surface was defined by 39 points in the streamwise
direction and 13 points in the spanwise direction. Com-
putational boundaries were located as follows: upstream
boundary at 15.4 chords, downstream boundary at 26.6
chords, far-span boundary at 1 .6 semispan, above the wing at
13.0 chords, and below the wing at 13.0 chords.

Steady aerodynamic pressures were computed by in-
tegrating Eq. (1) in time and setting the steady boundary
conditions on the airfoil. LTRAN3 does not compute the
residuals of the velocity potential to determine the con-
vergence of the steady-state solution. Convergence is
determined based on the pressures. The integration procedure
is stopped when the maximum pressure on the wing does not
change by more than about 0.1 % over 100 time steps. The
number of time steps required for convergence depends
mainly on the Mach number. For the cases considered in this
study, the number of time steps required was between 600 and
1000.

Unsteady aerodynamic pressures were computed by forcing
the wing to undergo a sinusoidal modal motion and in-
tegrating the aerodynamic equation of motion in time. The
modal motion assumed was the same as that simulated in the
experiments. For all of the cases studied here it was found that
about three cycles of motion with 360 time steps per cycle
were sufficient to obtain a periodic aerodynamic response.
Periodicity was tested by comparing the responses of the
second and third cycles. The magnitudes and phase angles of
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Fig. 1 Definition of aeroelastic parameters for a cantilever wing.
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Fig. 3 Comparison of magnitude and corresponding phase angle of
pressure jumps among results obtained by LTRAN3, experiment, and
linear theory at root.

the unsteady pressure jumps and corresponding force coef-
ficients were computed using the third cycle.

Aeroelastic Equations of Motion
The concept of generalized coordinates20 is used in deriving

the aeroelastic equations of motion. In this analysis two
generalized coordinates, h(t,y) and a(t,y), which correspond
to bending displacement and torsional rotation of the elastic
axis of the wing, were chosen as representative of the f lut-
tering wing. The generalized coordinates h(t,y) and c t ( t , y )
can be expressed as

h ( y , t ) = h ( t ) f ( y ) \ <x(y,t) =dt(t)0(y) (2)

where h ( t ) and a ( / ) are unknown functions of time, and
f ( y ) a n d 6 ( y ) a re assumed semirigid modes.

The following sets of functions for f ( y ) and 6 ( y ) ,
suggested by Fung,20 were considered in this analysis:

(3)

The aeroelastic parameters and sign conventions for a
typical section of the wing are shown in Fig. 1. It is assumed
that the wing is rigid in the chordwise direction and the
amplitudes of oscillation are small. It is also assumed that the
principle of superposition of airloads is valid, even in the
presence of shocks. The validity of this assumption has been
shown for two-dimensional cases both by experiment21 and
theory,16 provided the shock wave does not introduce
separation.

Considering the inertia, elastic, and aerodynamic forces in
generalized coordinates, the equations of motion are

mh + 5,y a 4- mu2
h h — Qh

Sl(h + (4)
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where

f f
in— \ m(y)J^(y)dy generalized mass

Jo

where

f f
,= \ f^ (y) ®2 (y) dy generalized mass moment of inertiaj o

S,=\ S.,(y)f(y)0(y)dy generalized static moment
,JO

and m(y), S a ( y ) , and fa(y) denote distribution of mass,
static moment, and mass moment of inertia along the wing,
respectively; uh and w(X represent frequencies corresponding
to the first bending mode h and first torsional mode a,
respectively; and Qh and Qa are generalized aerodynamic
forces corresponding to the modes f ( y ) and 0 ( y ) , respec-
tively.

After nondimensionalizing and assuming harmonic
oscillations

(5)

with flutter frequency w, Eq. (1) can be written as

(6)

where jji = iri/irp?b2, xa = S(,/mb, r2 =Ia/mb2, and t- = h/b.
Structural damping can be introduced into Eqs. (4) by

replacing co/r and cow by co / , ( l+ /g A ) . and ua(1 + i g a ) ,
respectively. The damping coefficients gh and ga correspond
to the h and a modes, respectively. It is further assumed that
gh and ga are small and of the same order.

If the aerodynamic forces Qh and Qa are expressed in terms
of aerodynamic coefficients Q&, Q(V, Cmh> and Cmn, Eqs. (4)
yield the eigenvalue equations

| = X [ A ' ] f ] (7)
«o ; ( oi0 )

where /:^ = ublUis the reduced frequency. The matrices [A/],
[/I ], and [/H are defined as follows:

/

Q/,/2

(8a)

<8b)

(8c)

mh= Cmhf(y)0(y)dy
J 0

and co,. is a reference frequency.
The eigenvalue X is defined as

(9)

where g ( = g / , = ^ ( V ) is the structural damping coefficient
which is assumed to be small and of the same order for both
of the assumed modes. The flutter solution is obtained when
the g value corresponds to the average of the two modes.

Flutter Solution Procedure
In Ref. 4, a procedure based on the U-g method was suc-

cessfully employed to determine the transonic flutter
boundaries of airfoils. In the present work, the same
procedure is extended to predict the flutter boundaries of
wings.

Unsteady aerodynamic coefficients required in this work
were the generalized lift and moment coefficients owing to
modal motions corresponding to a pure bending mode/(_y)
and a pure torsional mode 0 ( y ) . From the studies made using
NASTRAN it was found that these two modes were sufficient
to compute flutter boundaries within reasonable accuracy.

To solve Eqs. (7) by the U-g method, unsteady aerodynamic
coefficients C^, Qa, Cmh, and Cma are required as a function
of reduced frequency for each mode. In this analysis the
coefficients were computed at three reduced frequencies and
they were interpolated by a Lagrange interpolation scheme.
Since a low-frequency assumption was used in LTRAN3, the
reduced frequencies considered were less than 0.4 (based on
full chord).

Results
Comparison of Aerodynamic Pressure Coefficients

In Ref. 11, experimental investigations were conducted on
an unswept rectangular wing in the 6x6-ft supersonic wind
tunnel at Ames Research Center; the tunnel is a closed-return,
variable-pressure facility capable of furnishing a continuous
Mach number range from 0.70 to 2.20. The wings had an
aspect ratio of 3 with a 5% thick biconvex airfoil section. The
model was 27.44 in. in the span direction and 18.0 in. in the
chord direction. Both steady and unsteady pressures were
measured. Unsteady pressures were measured while the wing
was oscillating in its first bending mode with a tip amplitude
of 0.2 in.

Table 1 Comparisons of flutter speed and corresponding reduced frequency between
experiment

LTRAN3 and

Reduced frequency,
Thickness ratio,

Case

1
2
3
4

Mach No.

0.715
0.851
0.913
0.904

%

6
6
6
4

Density ratio,
m/irpb2

36.72
58.72
74.65
75.17

Flutter speed,
03C/U U/bun

LTRAN3

0.250
0.120
0.045
0.085

Expt.

0.232
0.162
0.122
0.138

LTRAN3

4.30
5.60
8.80
6.60

Expt.

3.83
4.55
4.94
3.70
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Fig. 5 Comparison of magnitude and corresponding phase angle of
pressure jumps among results obtained by LTRAN3, experiment, and
linear theory at 70 percent semispan.

In this study, steady and unsteady pressures from LTRAN3
are compared with experimental data11 at Mach numbers of
0.7 and 0.9 for four span stations located at 0, 50, 70, and
90% semispan. For unsteady computations the same bending
mode that was measured in the experiment was also simulated
in the code. These results are also compared with
corresponding data obtained in Ref. 11 in which linear
aerodynamic theory, based on the kernel function method,
was used. In the following results, the magnitude of the
unsteady pressure jump is scaled by the induced angle of
attack corresponding to the amplitude of the tip displacement,
and the phase angle is defined as positive if the pressure leads
the bending displacement. The magnitude and phase angle
from LTRAN3 correspond to the first fundamental harmonic
in a Fourier series decomposition of the pressure time history.

Comparison between LTRAN3 and experiment of both
steady and unsteady results are adequate at M = 0.70.22 In this
paper, results at M= 0.9 are given.

In Fig. 2, steady-pressure curves are compared between
experiment and LTRAN3 at M = 0.9 at four spanwise
stations. The two sets of curves compare fairly well. Except at
the root section, pressure coefficients and shock locations
obtained by LTRAN3 are in close agreement with those
obtained from the experiment. The discrepancies at the root
section can be attributed mainly to the boundary layer on the
wall, which was not considered in LTRAN3.

In Figs. 3-6, magnitudes IACP I and phase angles 3> of the
unsteady pressure jump obtained by LTRAN3, experiment,
and kernel function method are plotted at 0, 50, 70, and 90%
semispan stations, respectively, for M=0.9 and kc =0.26. In
general, the two sets of curves obtained by LTRAN3 and
experiment compare fairly well, except near the root. The
magnitude of the pressure coefficients compare better than
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phase angles. Peaks in pressure jumps occur at almost the
same locations for both LTRAN3 and experiment. The
comparison of phase angles is more favorable for points away
from the shock. Linear theory results do not compare
favorably, either with LTRAN3 or experiment, in the vicinity
of the shock, as expected.

In Figs. 2-6, discrepancies between LTRAN3 and ex-
perimental results might be attributed to 1) the viscous effects,
which are not considered in LTRAN3; 2) the reflection in the
flow boundaries in the code,23 3) the wind tunnel wall effects;
or 4) the fact that the small-disturbance theory has a tendency
to overpredict the shock strength.

Comparison of Flutter Boundaries
Reference 13 reports an experimental investigation that was

conducted in the Langley 2-ft transonic aeroelasticity tunnel
to study the transonic flutter characteristics of unswept
rectangular wings of aspect ratio 5 with circular-arc sections
at various thickness ratios and Mach numbers. The model was
11.50 in. in the spanwise direction and in the 4.56 in. chord-
wise direction. The elastic axis and the center of gravity were
located at the midchord. Thus, xn and ah were zeros for all
wing sections. The first bending frequency, a?/,, was 89.2
rad/s, and the first torsional frequency, wtt, was 505.2 rad/s
for the 6% thick wing. The corresponding frequencies for the
4% thick wing were co/7 = 87.3 rad/s and o>tt = 507.7 rad/s.

In this study, results obtained from LTRAN3 and from
experiments are compared for four cases: 1) 6% thick at
Af = 0.715, 2) 6% thick at M=0.851, 3) 6% thick at
M= 0.913, and 4) 4% thick at M= 0.904. These cases were
selected so that Mach numbers from a no-shock case to a
strong-shock case were included. Based on studies using
LTRAN3, the Mach numbers considered in the experiment

-Q

f3 4
0.
CO
cc
LU

D
-J

-LTRAN3
---NASTRAN
A EXPERIMENT
6% THICK CIRCULAR ARC WING
ASPECT RATIO = 5.0, M = 0.715

did not include a moderate-shock case for the 6% thick
model. Thus, a case from the 4% thick model was selected.

To understand the nature of the flow, steady-state pressures
were computed for all of the cases.22 It was observed that for
the 6% thick model at M = 0.715, the flow is subsonic
completely; at M — 0.851, the flow started becoming super-
sonic. At M= 0.913, shocks are fairly strong. For a 4% thick
model, shocks are moderate for M = 0.904.

Unsteady aerodynamic coefficients were obtained for two
assumed modes at three reduced frequencies.22 Frequencies
were selected based on those given in the experiment. For case
1 the reduced frequencies considered were 0.2, 0.232, and 0.3.
For all other cases, the reduced frequencies selected were 0.1,
0.15, and 0.2,,, The_ generalized unsteady aerodynamic coef-
ficients Q/,, Qa, Cmh, and Cma were obtained based on the
time response of the lifts and moments for a forced sinusoidal
motion. For all four cases considered, an amplitude
equivalent to 0.01 rad of induced angle was used. It was
observed that all cases required about three cycles to give
periodic responses.

Based on the unsteady aerodynamic coefficients obtained
from LTRAN3, flutter boundaries were computed by the U-g
method. In Fig. 7, results from LTRAN3 are plotted as a
curve of flutter speed and corresponding reduced frequency vs
wing-air-mass-density ratio for 6% thick model at M= 0.715.
The corresponding curve obtained by NASTRAN is given in
the same figure. The experimental results available for a wing-
air-mass-density ratio of 36.72 and a reduced frequency of
0.232 are also shown.

In Fig. 7, flutter results obtained by LTRAN3 and
NASTRAN compare fairly well. The flutter speed obtained
by experiment lies between those obtained by LTRAN3 and
NASTRAN. The reduced frequencies obtained from the
experiment are slightly lower than those obtained by
theoretical methods. From this it may be concluded that the
three methods compare well at the subsonic Mach number of
0.715. Also, the two modes assumed in Eqs. (3) are sufficient
to represent the cantilever wings considered.

Similar results were obtained for the other three cases.
Results for the four cases are given in Table 1. From this table
it can be observed that the flutter speeds obtained by
LTRAN3 are greater than those obtained by experiment. On
the other hand, the reduced frequencies obtained by LTRAN3
are lower than those obtained by the experiment, except for
case 1. With the increase in Mach number, both LTRAN3 and
the experiment show an increase in flutter speed, a decrease in
reduced frequency, and an increase in density ratio. Com-
parisons are better at lower Mach numbers. Differences are
quite significant at M= 0.904 and 0.913. These differences
can be attributed mainly to the possible discrepancies between
the aerodynamics of LTRAN3 and the experiment rather than
flutter modeling.
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Fig. 7 Comparison of flutter speed and corresponding reduced
frequency among results obtained by LTRAN3, experiment, and
NASTRAN for easel.

Conclusions
In this study some comparisons are made between the

results obtained by a three-dimensional unsteady code
LTRAN3 and available experimental data from NASA. Based
on aerodynamic comparisons it can be concluded that
LTRAN3 compares fairly well at Mach numbers of 0.7 and
0.9. Discrepancies found at Af =0.9 may be due mainly to the
fact that viscous effects are not considered in LTRAN3.
Comparisons of flutter results show that LTRAN3 compares
well with experiment at low transonic Mach numbers.
However, significant differences were seen at high transonic
Mach numbers such as 0.913. In general, the reasons for
discrepancies between LTRAN3 and experiment can be at-
tributed to: 1) viscous effects not considered in LTRAN3; 2)
limitations of small-disturbance theory, such as its tendency
to overpredict shock strengths; 3) reflections of the flow
boundaries in the code; and 4) wind tunnel wall effects and
model scale effects in experiment.
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